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Overview

Understanding the derivation of the differential linear momentum equation for
incompressible Newtonian fluids — the Navier-Stokes equation.

This is a set of partial differential equations that are valid at any point in the flow.

When solved, together with the continuity equation, these equations yield details about the
velocity, density, pressure, etc., at every point throughout the entire flow domain.

From these fields, by integration, we can find the gross features of the flow such as the net
force on the walls or on immersed bodies.

Obtaining analytical solutions of the equation of motion for simple flow fields.

Derivation of the Stokes equation for creeping flow. Obtaining the drag force on a sphere in
a uniform stream.

Other applications of the Stoke’s equation.




All models are wrong

but some are useful

George E.P, Box




Newtonian fluids
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Newtonian and

non-Newtonian
fluids

* Newtonian fluids, defined as
fluids for which the shear
stress is linearly proportional
to the shear strain rate. Many
common fluids, such as air and
other gases, water, kerosene,
gasoline, and other oil-based
liquids, are Newtonian fluids.

* Fluids for which the shear
stress is not linearly related to
the shear strain rate are called
non-Newtonian fluids.
Examples include slurries and
colloidal suspensions, polymer
solutions, blood, paste, and
cake batter.
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Toothpaste: Bingham plastic Ketchup: shear thinning ( f)Squo]')(é,/gll(A

https://www.youtube.com/watch?v=2mYHGn_Pd5M&t=143s

Cornstarch: shear thickening (a‘i(;—(awt'e) Honey: viscous Newtonian fluid




SEARCH & DISCOVERY

Viscoelastic fluids with no strings attached

Dispensing a fluid is quick
and clean when the nozzle
is rotated. The fluid's elastic

properties are the reason why.

likely dealt with the wisps of glue that

trailed after it. The same issue plagues
additive manufacturing: Instead of a tidy
reproduction of the desired shape, a three-
dimensional printer constructs an object
marred by plastic strings, as shown in
figure 1. Those strings are difficult to pre-
vent when dispensing plastics, polymers,
and other viscoelastic fluids, which be-
have as viscous fluids at low speeds and
as elastic solids at high speeds.

When an ordinary Newtonian fluid
such as water is dispensed from above, it
bridges the gap between the target sub-
strate and the nozzle. If the gap is kept
below a critical value, the connection
is stable. At or above that value, gravity
gradually drains the liquid until the
bridge breaks. To speed up the severance,
one can simply lift the nozzle to thin the
bridge until it splits.

Retraction also expedites the breakup
of viscoelastic liquid bridges. But as the

| f you've ever wielded a glue gun, you
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FIGURE 1. PLASTIC STRINGS mar the 3D-printed gazebo shown here. The strings
appear when the printer nozzle lifts to detach from the deposited viscoelastic fluid.

That retraction elongates the connecting fluid bridge, and after detachment, the
strand sticks out. (Photo by Vicky Somma, CC BY-NC-SA 2.0.)

https://doi.org/10.1063/PT.3.4809

a Stable Stretching

Satellite
droplet
Capillary
tail

Twisting



https://doi.org/10.1063/PT.3.4809

Water Olive QOil Honey

Medium viscosity

www.shutterstock.com - 1308961747

Viscosity of Newtonian fluids

Caracterizes the degree of internal ‘friction’
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This “friction’, viscous stress, is associated with the resistance offered by two
adjacent layers of the fluid to their relative motion.



Superfluid
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https://www.youtube.com/watch?v=276UJbwxBZI > < >< 2 i

Indistinguishable particles.

EIEIEOUs
Nearly zero viscosity fluids.

Hydrodynamic equations are
classical.
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Suggested reading: https://www.scientificamerican.com/article/superfluid-can-climb-
walls/

> »l o) 1:25/1:44

Superfluid helium
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Differential analysis: mass

We start with the conservation of mass, which through the RTT yields the continuity
equation

e , ap = —
Continuity equation: o + V-(pV) =10 :
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Alternative form of the continuity equation: ‘1=
&
1 Dp —_ L
——+VV=0 :
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Streamline

Continuity equation in cylindrical coordinates:

d a(r, d d .
ap N l rpu,) N l (puy) N (pu,) — 0
dt r ar raf az

Steady continuity equation: V-(pV) =
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Incompressible continuity equation:

Incompressible continuity equation in Cartesian coordinates:

du dr dw
+—+

=0
dax dy dz

Incompressible continuity equation in cylindrical coordinates:
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The volumetric strain rate vanishes
for incompressible flows.
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Recall

Reynolds transport theorem (RTT)

= = dB.sys d = —
(@ ®) = -[:v—(pb) d\V/ + [ pbV-n dA

FIGURE 4-53 d'f
Two methods of analyzing the spray-
ing of deodorant from a spray can:
(a) We follow the fluid as it moves
and deforms. This is the system
approach—no mass crosses the
boundary, and the total mass of the
system remains fixed. () We consider
a fixed interior volume of the can. This
is the control volume approach—mass
crosses the boundary.

—

Surface force acting on a differential surface element: dF

o.-n dA

surface ~ ' ij



Differential analysis: momentum

* For a control volume the RTT gives the momentum equation:

— I _ I — [ i — I — =
EF = | pg dV + | o, ndA = —(pV)dV + | (pV)V-n dA
Jov IS Joy ot Jcs dy

dx

* The total force acting on the control volume is equal to the rate at
which momentum changes within the control volume plus the rate at
which momentum flows out of the control volume minus the rate at
which momentum flows into the control volume.

* The divergence theorem implies that

(pV)\V-i dA = L V-(pV V) dV
. v

CS s



and

L oyndA = f Voo dV
5 CV

* Re-arranging the terms, we find the equation

dV =10

[ ] 5 = = -
L [— (pV) + V(pV V) — pg — Vo
v | ot

valid for any CV and thus, we obtain the Cauchy equation of motion

d — — —s — — —
Cauchy's equation: E[,r.ﬂﬁ']- + V-(pVV) = pg + Vo

Other derivations are possible, e.g. by starting from an infinitesimal CV.
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Alternative form of Cauchy’s equation

* Clearly,

.-:r‘-f“J—P—Jf‘-f’E

* The second term of Cauchy’s equation can be written as
V-(pV V) = VV-(pV) + p(VIV
 Substituting this into the Cauchy’s equation we find

WTFV = 97 + Vo

I:I'I--r —| dp
p—+‘.r“—-l—"'FLp'|rfJ

* The continuity equation implies that the term in brackets vanishes

and then

Alternative form of Cauchy’s equation:



Cauchy’s equation in cartesian
components




The Navier-Stokes equation

* To be mathematically solvable, the number of equations must equal
the number of unknowns, and thus we need six more equations.

* These equations are called constitutive equations, and they enable us
to write the components of the stress tensor in terms of the velocity
and pressure fields.

* The first thing we do is to separate the pressure stresses and the
viscous stresses.

e For a fluid at rest

T O O —P 0 0
Fluid at rest: O = |0y Oy o |=| 0 =P 0
&y On O, 0 0 —P



* For moving fluids,

Moving fluids:

T Tp Tp —P 0 0 T Ty Tum
oy =0y Oy Oy | S 0 —P 0]+ T Ty T
On Op Og 0 0o -—-P T Ty Tz

* where we have introduced a new tensor, 7;;, called the viscous stress tensor
or the deviatoric stress tensor.

* There are constitutive equations that express 7;;in terms of the velocity field
and measurable fluid properties such as the viscosity.

* The actual form of the constitutive relations depends on the type of fluid.

* The stress is Galilean invariant: it does not depend directly on the flow
velocity, but only on spatial derivatives of the flow velocity. So the stress
variable is the tensor gradient Vu.

* The fluid is assumed to be isotropic, as with gases and simple liquids, and
consequently tis an isotropic tensor; furthermore, since the deviatoric stress
tensor can be expressed in terms of the dynamic viscosity p:

20



Acheson, page 209

Stokes (1845) deduced eqn (6.9) from three elementary hypoth-
eses. On writing T;; = —pd,; + T these amount essentially to:

(i) each T; should be a linear function of the velocity
gradients du,/dx,, du,/dox,, etc.;

(ii) each T} should vanish if the flow involves no deformation
of fluid elements;

(iii) the relationship between T} and the velocity gradients
should be isotropic, as the physical properties of the fluid
are assumed to show no preferred direction.

21



Navier-Stokes equation for incompressible
and isothermal flow

Viscous stress tensor for an incompressible Newtonian fluid with constant properties:

— ¥
TI'; - .LIP'.E

4] o

where u is the shear viscosity.

In cartesian coordinates, the deviatoric stress tensor becomes

Ta Ty Tx
T = Ty T

22



Stress tensor for Newtonian fluids

au aul arr di aw
ru Mutu) Mat e
—P 0 0 ) s ; )
drr i U duv  aw
=lo —p o |+| ul—+= & w, v
i H( dx u:n) oy H( dz ﬂ}-‘)
0 0 —-P )
aw i aw darr . aw
Max " az) "y " oz T

Substituting this into Cauchy’s equation we find, in the x direction:

Du _ aP , du a (ov  ou a [aw
P~ g TPt gt | T TR o T

dx  dy 97\ dx

du
oz

We note that as long as the velocity components are smooth functions of
X, Y, and z, the order of differentiation is irrelevant. For example, the first

part of the last term above can be rewritten as

a [aw]l d [ dw
Foaz\axr) Hax\ez
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After some (clever) re-arrangements of the viscous terms we find

Du_ op . [0uw oo o du daw du
P pr ax  PERT RIS T axax  axdy | oy | ex oz | oz

ax | PETH | ax \ ax az axt  ay* a7’
0
and thus
ﬁ = _E + + ﬁrlu
Similarly,
D a
— = ——+ pg, + pVu
P Di 3 PEy T K
oW _ % g, + uVw
P Dt 3z PR, T K

Incompressible Navier—Stokes equation:

vV ~
= —VP + pg + pV'V
Di pg + p N

fi



Incompressible continuity equation:

du

x-component of the incompressible Navier-Stokes equation:

a2

au

aP N &’u . N
ax H\ a2 ayt ot

v-component of the incompressible Navier—Stokes equation:

apP v

R

v

z=component of the incompressible Navier-Siokes equation:

-——+ + + +
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. - . La(ru)  10(up) alw)
Incompressible continuity equation: o + — P o 0

r-component of the incompressible Navier—Stokes equation:

i)
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B-component of the incompressible Navier-Stokes equation:
d d d i
p( Up By | Uy By UMy "u)

at T ar r aﬂ' r uzﬂz

r af rar\  ar rroort et oaf
z-component of the incompressible Navier—Stokes equation:
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Viscous stress tensor in cylindrical
coordinates




Alternative derivation of the Navier-Stokes
equation (skip on a first reading)

* It can be shown (Faber page 196-198) that the isotropy of the fluid,
the symmetry of the shear stress and the linearity between stress
and strain rate imply,

2 (2 8u| - aug o 6:43
dx, 0x,  axy)’

where

3p=pi+pr+pi=p+p:+ps

with similar equations for 2 and 3.

* For incompressible fluids, the equations may be re-written,

ou
pr=p— 25—,
dx,

or ¢lse that

olr  dllx

=p+2ni— + —|.
Pr=p i (axg 8x3)



Now any second-rank tensor may be expressed as the sum of three parts, one of
which is isotropic in character and the other two_anisotropic. The two anisotropic
parts are traceless tensors (the word ‘traceless’ means in this context that when the
tensors’ components are written out in matrix form the diagonal ones sum to
zero), one of them symmetric and the other antisymmetric; the components of the
antisymmetric part change sign when the reference axes are reflected (i.e. when
they are labelled according to the left-handed convention instead of the right-
handed one, or vice versa), but the components of the symmetric part are
unaffected by refiection. The stress tensor, for example, may be divided thus:

1 I 2
I‘Tr.l' . Efl}”ﬂm:“ + ; !”."i + '”_rr . Er'jfﬁ'.”’"”'l F

where, according to the standard summation convention for repeated dummy
suffices,

Onm = O + O + 033 = _3pa
we may write the symmetric anisotropic part of the stress tensor —
oy + 0yp = q;; (say),

i

while the antisymmetric anisotropic part — the third term — evidently vanishes.

29



[f the rate of deformation tensor is divided in this way its isotropic part turns out
to be

0 1
l{jﬁdu_"‘ =2 6,V-ul,
3 7 oxy, 3"

while its symmetric and antisymmetric anisotropic parts are respectively

1 [du; .2 du
;)._(__*4.%__6

if =| = Eg' Sa
ox; ax, 3 "axm) -ip (say)

and

1 {ou; ou;
5 (— - —I) = wj (say).

dx;  dx;

The symbol w is appropriate in (6.19) because what w;; describes on its own is the
local rate of rotation of the medium; its six non-zero components are the
components of the vectors +342 and —342, where 2 is the vorticity. What Gi
describes on its own is a type of shear flow which is vorticity-free.
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Figure 6.3 The effect on the squarc fluid element shown in (a) of (b)
vorticity-free shear (£, > 0, @, = 0), (¢) pure rotation (> = 0, @y = 0), and
(d) an equal combination of the two ({;> = w >, = 0).



Where one second-rank tensor depends upon another in a linear fashion, the
coefficient is a fourth-rank tensor which in general may have up to 81 independent
components. However, the fourth-rank tensor which relates stress to rate of
deformation i a Newtonian fluid must be 1sotropic if the fluid itself is isotropic,
and this greatly reduces its complexity. It turns out that each of the three parts of
the stress tensor must then be separately related in a linear fashion to the

corresponding part of the rate of deformation tensor, and that the coefficient is in

cach case a scalar. For example, we must expect

]

5 (0 — 0;) >~ wy.
In this case the scalar coefficient of proportionality must be zero because the
antisymmetric part of the stress is always zero, and this 1s no surprise; local
rotation does not change the separation between any two points embedded in the
fluid an infinitesimal distance apart, so there i1s no recason to expect it to give risc to
stress. More significantly, we must expect g; to be proportional to ;. and by
choosing the constant of proportionality to be 2y we arrive at once,

fau; o ooy 2 dug,)
T e e -;Jr-+p——~r}2‘———,_;.
\dx;  dxg, Lax; 3 ox,,/

32



Total force on a fluid element (component 1)

o5
1 )
LK) + jd R

ap
Pl"’%dﬁfz

_1( Py 653+852 a9z
axl axz 8I3 axl



Supposing the fluid to be Newtonian and effectively incompressible,

a (p
fi= = (_ + SZ)
axy \p
+ E (_ ) 6‘2u2 ) 62u3 " 6"21121 n 62112 n 82113 n azul).
pl ax0xs X 10X 0X3  AX0x,  Ox3dx,  Ox3

After rearrangement of terms this becomes
fi = - i(g N gz)- nla (au2 B 6;11) K (a:fl B 8u3) ‘
a’x; P P axz ﬂxl EL\TZ 6.‘-\:3 6'.13 axl

and the complicated expression enclosed by curly brackets on the right-hand side
15 just the x; component of VA (V /A u), 1.e. of VA (2,

The total force in vector form is

f:—V(f—)-l-gz)—HV/\ﬂ.
p p
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Navier-Stokes equation for incompressible
fluids

)
- Vp* — yV A Q2 = ;;ﬁ + plu-V)u,
ol

where p™ 1s the local excess mean pressure defined by (2.21). Equation (6.25) 1s the
equation of motion which replaces Euler’s equation for a fluid which has viscosity
but which is still effectively incompressible and also, to be on the safe side,
isothermal. It differs from Euler’s equation only, of course, in so far as it includes
a viscous term.

Obviously, the term involving i drops out when £2is uniformly equal to zero.

The term mvolving » also drops out, of course, when £2 is uniformly equal to
some constant other than zero and, more generally still, whenever {2, although
non-untform, is expressible as the gradient of some scalar potential
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Boundary conditions

* The most-used boundary condition is the no-slip condition, which
states that for a fluid in contact with a solid wall, the velocity of the
fluid must equal that of the wall,

|
l

-

I H - —— CET - —
No-slip boundary condition: fsid = ¥ wall

Magnifying

Piston glass
v

x 37




Boundary conditions

* When two fluids (fluid A and fluid B) meet at an interface, the interface
boundary conditions are

Interface boundary conditions: Vi, = V¥ and 7., =T.q
Fluid B
F====
—% : 1
n Vi 1 15, B II
? -:-_—:_.!' ----- R
.'_-_-__;...h 1 75, A i
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Boundary conditions

* For a liquid in contact with a gas, with negligible surface tension
effects, the free- surface boundary conditions are

Free-surface boundary conditions: Pigia = Fops  and 7, 50 =0
Fluid B—air
o
@)
HE'" T - I| / air
——————— e e P
— 7
¥ Uwater T al
Lf ou
1 i aF
Fluid A—water " S water
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Fully developed Couette flow

V
Moving plate
Fluid: p, st h | _""
|
Fixed plate W X 1 X
-
+2

* Consider steady, incompressible, laminar flow of a Newtonian fluid in the
narrow gap between two infinite parallel plates. The top plate is moving at
speed V, and the bottom plate is stationary. The distance between these two
plates is h, and gravity acts in the negative z-direction (into the page).

* The boundary conditions come from imposing the no-slip condition: (1) At the
bottom plate (y =0),u=v=w=0. (2) At the top plate (y=h),u=V,v=0,and w

=0.
e Continuit B oy i au
Y 2+ F v E=-o 5 Z-op
dx ay ‘a7 dx

Result of continuity: u = u(y) only 0



Navier-Stokes x, y and z componentes:

There is no applied pressure gradient pushing the flow in the x-direction; the flow

establishes itself due to viscous stresses caused by the moving upper plate.
71O
D —7 - - l —
+ . AIu = =P + T L mIu

In the)idirection: - v

d d di du a P
Pl + uwur— + -— + —_ | = —F + pg
ol X gy dz dx il
L
\/ ¥l
0

0 =
-~ ¥ A ¥
. ‘<. 0 d-H d°u 9 d u
In the y direction: n FL<_% = ﬁ:) . = =
dx dy @z ay
dF 0 i Vo ¢
S—— = 21 9
ay 'f D/M €e
Y4
Result of yv-momentum: P = P(z) only

In the z direction:

aP dP
- = —P8 —+ = —pg
az dz
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Velocity field

u=Cy+ G M(@,:%):\/ﬁ@’%\ V
Az/u /7\ M(‘Z;O):O 77(2;0 [ I ,
/-/Z:O ! H=Vﬁ ¥
2 | T

Final result for velocity field:

Pressure field

P=—pgz+ G

1
|
1 o
Final solution for pressure field: P =P, — pg: i S

For incompressible flow fields without free surfaces, hydrostatic pressure
does not contribute to the dynamics of the flow field.
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Shear force on the bottom plate

Deviatoric shear stress tensor

au du ar au dw V
2 o “(\; ?) ”(I_E) 0wy 0
v au’ arr ar aw ¥
oo|deS) 5 S e o
(élu' .:m) (’..m- v’ aw 0 0 0
Max " az) My a_) oz
Rotational flow

= L — i

F V=
A h

Shear force per unit area acting on the wall:

Discussion The z-component of the linear momentum equation is uncoupled from
the rest of the equations; this explains why we get a hydrostatic pressure
distribution in the z-direction, even though the fluid is not static, but moving.

The viscous stress tensor is constant everywhere in the flow field, not just at the
bottom wall (note that the components of the tensor are not a function of location).
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Rotational viscometer

The gap between the two cylinders is very small and
contains the fluid.

The magnified region is nearly identical to the parallel
plates setup since the gap is small, i.e. (R, - R;) <<R..

In a viscosity measurement, the angular velocity of the
inner cylinder, w, is measured, as is the applied torque,
T,pplied » F€QUiIred to rotate the cylinder.

{
|  Rotating inner cylinder

Stationary outer cylinder

From the previous example, we know that the viscous shear stress acting on a fluid
element adjacent to the inner cylinder is approximately equal to

% @R,

T =Ty = H

R-R "R R

h
T acts to the right on the fluid element adjacent to the inner cylinder wall; hence,
the force per unit area acting on the inner cylinder at this location acts to the left

with the same magnitude.




The total clockwise torque acting on the inner cylinder wall due to fluid viscosity is
thus equal to this shear stress times the wall area times the moment arm,

_ _ (lt; . )
7/:0\]: J Tiscous _\:‘;‘_ﬁf = ”Rﬂ — R, (‘—WR:'L R;
/\v?
0

Under steady conditions, the clockwise torque T, iS balanced by the applied
counterclockwise torque T, eq- EqQuating these we find

Viscosity of the fluid:

(PV\Ll e (J@(O
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Couette flow with applied pressure gradient

The same as in the Couette flow of the previous slides

but the x-component of the momentum equation is
Now:

du 1 4P
Result of x-momentum: —_— = ——
dy*  poax
Integrating twice yields
Integrati turm: AL +Cy+ C
niegration of x-momentum: u = 20 ox ¥ v 4
For the pressure
Integration of Z-momentum: P =

Moving plate

Fluid: p, p

P, Fixed plate

X ap _P-P
ox X3 —X)

—pgz + fix)

doP
Final result for pressure field: P=r+ a—r - pgz
X

W _ _
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* Applying the velocity boundary conditions

1 aF

u=ﬂﬂxn+c.xu+q=u - ;=0
=$%h’+flxh+ﬂ=\-’ — f‘1=f—ﬁgh
Vy 1 oP ]
H = + — (v* — hy) h
h  2p ox J

* u(y) is the velocity profile of Couette flow between parallel plates
with an applied negative pressure gradient; the dashed red line
indicates the profile for a zero pressure gradient, and the dotted line

indicates the profile for a negative pressure gradient with the upper
plate stationary (V' < 0).
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Dimensional analysis

* The problem is set in terms of velocity u as a function of y, h, V, m,
and —P/-x. There are six variables (including the dependent variable
u), and since there are three primary dimensions (mass, length, and
time), we expect 6 - 3 dimensionless groups. When we pick h, V, and
m as our repeating variables, we get the following result:

h* aP
Result of dimensional analysis: %= (E,__)

Dimensionless form of velocity field: u* = y¥ + —PH5¥y* — 1)

0_3__ /
] S / *1s

0.6 10
yi=yh ] 5 -10
0.4

0.2 -




Oil film falling down a vertical wall

¥ 1. The wall is infinite in the yz-plane (y is into the page for a right-handed
B coordinate system).

P=rfw 2 The flow is steady (all partial derivatives with respect to time are zero).
@™ ar 3.The flow is parallel (the x-component of velocity, u, is zero everywhere).
_ 4. The fluid is incompressible and Newtonian with constant properties,
well \ \E and the flow is laminar.

5. Pressure P = P, constant at the free surface. In other words, there is
no applied pressure gradient pushing the flow; the flow establishes itself
due to a balance between gravitational forces and viscous forces. In
addition, since there is no gravity force in the horizontal direction, P = P_,,
everywhere.

6. The velocity field is purely 2D, which implies that derivatives w.r. to y
are zero.

7. Gravity acts in the negative z direction.

8. The boundary conditions are: no slip at the wall; atx=0,u=v=w=0.
At the free surface (x = h), there is negligible shear, which for a vertical

-— ————

. . . 0
free surface, in this coordinate system, mean a—‘;v = (0atx=h.



Continuity:
Foad o2, o2,
X az az

Result of continuity: w = wix) only

2+ ]a)]t -
NS w: (ﬂw % 7@) ,;g

W Iz == C|I + CE 0
. 2;1. ]
Integration:
. 013
- - /{/,:O/:; !
Boundary condition (1): w=0+0+C=0 =0 ] \"
and " 03 \\a\
h : Yy
Boundary condition (2): %) =i =0 = ¢ =- 042 W
- M K 1wl NG
e Free surf B \
TEC 51 ﬂ:e..._‘__‘_‘_‘
_0-6 T TT T TT 1T 1T “‘;“‘I“‘I“‘
X _ ot
Velocity field: w=ﬁf—ﬁm=£(_‘._ﬁ} 0 02 n;* 06 08 I
In i 2p wE =% - 2)
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Flow in a round pipe: Poiseuille e

D
1 The pipe is infinitely long in the x-direction. . i |
2 The flow is steady (all partial time derivatives are zero). ==
3 This is a parallel flow (the r-component of velocity, u,, is zero).

4 The fluid is incompressible and Newtonian with constant properties, and the
flow is laminar.

5 A constant pressure gradient is applied in the x-direction such that pressure
changes linearly with respect to x.

6 The velocity field is axisymmetric with no swirl, implying that ug = 0 and all
partial derivatives with respect to 6 are zero.

7 We ignore the effects of gravity.

8 The first boundary condition comes from imposing the no slip condition at
the pipewall: (1)atr = R,V = 0.

9 The second boundary condition comes fromathe fact that the centerline of
the pipe is an axis of symmetry: (2) atr = 0, Pl 0. Alternatively: the

velocity is finite at the center.
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Recall — Cylindrical coordinates

Gradient ﬂﬁ.,. lﬁ¢+ ﬂﬁ

dp p Op 0z

0 (pA 0A
Divergent = (p4,) L b ok o oa
p Op p Op 0z

1=

Laplacian —— (
p Op

d i g d?
R ) L LEE T
Op p? 0p?  02?

https://en.wikipedia.org/wiki/Del_in_cylindrical _and_spherical_coordinates



ﬂ a!uﬁﬁ
Continuity: Hr ] =) ou _ 0
ar ﬂx dx

Result of continuity: u = u(r) only

a d g F
'ﬂ(?g " ”’7§ T Ve T "ﬁ)
apP du 14 g’
"E*&,%’*#(J( ar)+_y_{§_+_x1

1d( du)_ 1P
r dr ﬂ'r _p‘.ﬂx
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r-momentum: o
dr
NS p: . .
Result of r-momentum: P = P(x) only
: : du r* dP
Integration of NS for u: — — + G,
dr  2p dx
H=EE+E’|II:IF+ C,
1 dP

4p dx

54



Poiseuille’s law for the flow rate

: , : R* dP
Maximum axial velocity: U = _E E

T R B
: dar dP R dP
U=L J urdrdEJ:—“—[ 2 — Ryrdr = ————
-0 Jr=0 4 dx Jr—g B dx

vV —mRY/8) (dP/dx R dp
Average axial velocity: V = i ( ﬂ't;{ ) = _EE
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Viscous shear force

The stress tensor is

0 0 —
T T T K ar
T = | Tor Too Tax|= 0 0 0

Ty T T

Centerline

Viscous shear stress at the pipe wall: T = — = EE

For flow from left to right, dP/dx is negative, so the viscous shear stress on the
bottom of the fluid element at the wall is in the direction opposite to that indicated
in the figure. (This agrees with our intuition since the pipe wall exerts a retarding
force on the fluid.) The shear force per unit area on the wall is equal and opposite to

this; hence,

=9

P
— i

X

F_ R
A 2

Viscous shear force per unit area acting on the wall:



Viscosity and Poiseuille's Law:
https://www.youtube.com/watch?v=wTnl_kfPBhQ

Asthma Attack
—_—

s
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o

If airway radius reduced by 25%, by how much is airway resistance affected?

1
! 2/ar )4
Rattack — Mlattack ~ 32 Airway resistance >
R ’ 300% baseline!

Full screen (f)
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Force balance

Navier-Stokes equation

7

o + MV = =VP L5 + v
2t £

In most of the previous examples, the acceleration of the fluid elements is zero. It
means that the viscous force balance the external force (e.g., gravity) or pressure
gradients in such a way that the sum of forces acting on a fluid element is zero.



Alternative
derivation for flow in
a circular pipe

Obtain the momentum equation
by applying a momentum
balance to a differential volume
element, and we obtain the
velocity profile by solving it.

Free-body diagram of a ring-
shaped differential fluid
element of radius r, thickness dr,
and length dx oriented coaxially
with a horizontal pipe in fully
developed laminar flow.

Sec. 8.4, Cengel

Tr+dr
=
Py 17T Py
L]
—
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In fully developed laminar flow the axial velocity is, u= u(r). There is no motion
in the radial direction. There is no acceleration (check: calculate the

acceleration and verify that it is zero). b3 fzq e
AN
* Consider a ring-shaped diff tial vol I t of ‘f‘ I\M:'
g-shaped differential volume element o N oo
radius r, thickness dr, and length dx oriented coaxially M-
with the pipe. H _;7/‘
/ ms3¥
* The volume element involves only pressure and *
viscous effects and thus the pressure and shear forces
must balance each other. The pressure force acting on 21 1
a submerged plane surface is the product of the o L
pressure at the centroid of the surface and the surface AN
area. A force balance on the volume element in the M4
flow direction (x) gives
@L"L‘K/"V ) — (210 dnP) o - g
d A r s
°

— (zHrdut), + (zﬂm(wf)”a(v

- O
h— 60




() ':' LY @l.x o[u/‘

(w?>u - <V\P)w(—du
d < N d

v ?1&('6'1 — E _ (V‘T)v\-{fdu\ - (V\T)V - O

——

= Av

(/‘d(P — j V"C’) = © pn 5 T = Jﬂl
3 | :

AP - ou d X
g f 'Iw(w@%{?) -

v L () _1er
Same equation obtained with NS: rdr\ dr)  pax



Recall

Deviatoric stress tensor

o 7o (70

Tar Top Tz
du a [y 1ﬂuf] (ﬂuf ﬂuz)
2u— r——]+—-—— —+
K ar ,u.[ ﬂr(r) r af K az ar
afug 1 du 1 ouy u uy 1 ﬂ'&)
= —( =)+ 200+ — + -
'”'[rar(r) r ﬂﬂ'] P'(r af r Maz " rap

du, ﬂui) (qill..lrﬂ 1 ﬂuz) du,
—+ — + —— 2u—
,u( 9z ar H az r af H 9z

Stress tensor

L » o
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Different fluid element (r from 0 to R)

2aRdx T,
g—
L
| : TRYP + dP)
| |
__
: ol
T il |
= _: :.-____..._-_
X 1 "
]
dx
Force balance:
aRP —wRYP + dP)-2wR dx Te=0
Simplifying:
dP _ 2oy

dx s
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Separation of variables implies that the pressure gradient is constant % =

The velocity profile is obtained by integration and use of the boundary conditions:

2 (dP (W')M(I/\: 74 \ = O
ufr]=4#(a)+ LInr’+9‘/
&

-9 (fu(»/‘z @) e f(vnl”Lo )

=50 -5)
The average velocity is

= o= 2 [ EOs- £y -£(O)
e~ g2 L U ar = pa L 4y \ dx )Y T T8u\dx
In terms of which the profile becomes

u(r) = zufm.g(1 - ;7)




Effect of gravity

* Gravity has no effect on flow in horizontal pipes,
but it has a significant effect on both the velocity
and the flow rate in uphill or downhill pipes.

 Relations for inclined pipes can be obtained in a
similar manner from a force balance in the
direction of flow. The only additional force in this
case is the component of the fluid weight in the
flow direction, which is

W, = Wsinf = pgV

glement

sin @ = pg(27rdrdx) sin

Then (2ardr P), — 2wrdr P),, 4 + (2ardx 1), —7

— (27rrdx T}H 4 — PE2mrdrdx)sinf =0 — W

and ﬁi( au) dP
dr

= — + pgsinf
p r pg sin

dx
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Effect of gravity

The velocity profile, average velocity and flow rate are:

u(ry = — R (E + pg sin B)(l — r':)
[ ap \dx P8 R?

, (AP — pgL sin #)D? . (AP — pgL sin §y7wD*
Vave = 324l and V= 128pL

* As expected, gravity opposes uphill flow, enhances downhill flow, and has no effect
on horizontal flow.

* Downhill flow can occur even in the absence of a pressure difference applied by a
pump. For the case of P, = P, (i.e., no applied pressure difference), the pressure
throughout the entire pipe would remain constant, and the fluid would flow
through the pipe under the influence of gravity at a rate that depends on the angle
of inclination, reaching its maximum value when the pipe is vertical.

66



Dye trace

ang

Dye injection

(@) Laminar flow

—

Dye trace

Vay &

Dye injection

() Turbulent fow

The flow regime in the first case is said to be
laminar, characterized by

smooth streamlines and highly ordered
motion, and turbulent in the second

case, where it is characterized by velocity
fluctuations and highly disordered motion.

The transition from laminar to turbulent
flow does not occur suddenly; rather, it
occurs over some region in which the flow
fluctuates between laminar and turbulent
flows before it becomes fully turbulent.

Most flows encountered in practice are
turbulent. Laminar flow is encountered
when highly viscous fluids such as oils flow
in small pipes or narrow

passages.
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Re = 2300 laminar flow
Reynslds 2300 = Re = 4000 transitional flow
numoper i
Re = 4000 turbulent flow
-0_0
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https://www.youtube.com/watch?v=6A8B05V40zA

= B2 Youlube o flow turbulence tube

Flow Velocity Increasing -

D ye

Injection ->

Transitional Flow (Wavey)
Reynolds number Re ~2,200-4,000

> M O o017/035 © & [« O 8] I3

#fluidmechanics #fluiddynamics

Visualization of Laminar to Turbulent Flow Transition in a Pipe

e'fh Fluid Matters
‘ﬁy 4.72K subscribers w Eﬁ 7 9] A> Share




Sudden motion of an infinite flat plate

B P Fluid: p, p
£ =8k

Z ——> My #0
k A Mo, My ~ O
Infinite flat plate ?

P @5\

Consider a Newtonian fluid on top of a flat plate in the xy-plane at z = 0. The fluid is at rest
until t =0, when the plate suddenly starts moving at speed V in the x-direction.

1 The wall is infinite in the x- and y-directions; thus, nothing is special about any
particular x- or y-location.

2 The flow is parallel everywhere (w = 0).

3 Pressure P = constant with respect to x. In other words, there is no applied pressure
gradient pushing the flow in the x-direction; flow occurs due to viscous stresses caused
by the moving plate.

4 The fluid is incompressible and Newtonian with constant properties, and the flow is
laminar.

5 The velocity field is two-dimensional in the xz-plane; therefore, v=0, and all partial
derivatives with respect to y are zero.

6 Gravity acts in the -z-direction
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Initial and boundary conditions:
(1) Att =0, u=0 everywhere (no flow until the plate starts moving);

(2) at z=0, u =V for all values of x and y (no-slip condition at the plate);
(3) asz - o, u = 0 (far from the plate, the effect of the moving plate is not felt);

(4) atz=0,P =P, (the pressure at the wall is constant at any x- or y-location
along the plate).

ﬂq‘o ‘“) =9
Continui du %k aw du
* Continuity — 4+ + =1 - | — =0
dx @y T?/E:_ ox
Result of continuity: u = u(z, N only

* y—momentum

*:_F — 0 Result of y-momentum: P = P(z, 1) only
y



P _

7
—pg =) P = Pl ‘(3)’
0z

Z - momentum

X —momentum y’*& " ; ';DB._AZ #o (,/é"a Se faxc Usdwn b){é{. 4 fon(JS)

{a=° 0 Px) z¢e

(:ﬂ" b + ) + . :)-— 5%5; +

TR R A 2

o 7/' ® 7 . .ﬂa&‘ alu E - ﬂ
Ver € t’f/umuamo + L + ﬂﬁal + —> 2

az* at az
V-f:‘ 2 [u..)_.—o 0 _e
oy (
(Diffusion equation for u, with D=v) ey 200\ BUe
1“61,4. Jepdiur, 5}~ ds Aitue;.
C 2
du | 0% -a——;_- =DJ%¢
Result of x-momentum: PP — D) )zt




The 1-D diffusion
equation is linear

It is a partial
differential
equation (PDE)

It is used in many
fields of physics
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Diffusion equation

DIFFUSION

Dye
Molecules

Water
Molecules

o o o ofbgp @e
sooooed

[0 [RAEER
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From the z-component we obtain the pressure
P = —pgz + fl1)

Boundary condition (4): P=0+fit) = P_, — ) = B,
Final result for pressure field: P=P_ 53— psz
1 —
Final result for velocity field: N = F[l - E]‘f( - )]
0.8 2"-.-"‘"17!
0.6
erf(¢) £) = 'r T
04— | Error function: erf(£) = —— | e "dn
] Vo o
02
0 —frrrr e RN RRRR Verify that this is a solution of the differential equation and that it
0 05 1 1.5 2 25 3

satisfies the boundary conditions. 75
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After 15 min of flow, the effect of the moving plate is
not felt beyond about 10 cm above the plate!
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e

=
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i, mfs

water at room temperature (v = 1.004 X 10-° m?/s) with V= 1.0 m/s

C—
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The time required for momentum to
diffuse into the fluid seems much longer
than we would expect.

This is because the solution presented
here is valid only for laminar flow.

It turns out that if the plate’s speed is
large enough, or if there are significant
vibrations in the plate or disturbances in
the fluid, the flow will become turbulent.

In a turbulent flow, large eddies mix
rapidly moving fluid near the wall with
slowly moving fluid away from the wall.

This mixing process occurs rather quickly,
so that turbulent diffusion is usually
orders of magnitude faster than laminar
diffusion.

3_
2.5
-
zm'f’:\
e —
] \"-..
ﬂj: R“\‘
U_IIIIIIIIIIIIIIIIIIII
0 02 04 06 O8
'V
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Sec. 10-2 Cengel

Non dimensionalized equations of motion

Our goal in this section is to nondimensionalize the equations of
motion so that we can properly compare the orders of magnitude of
the various terms in the equations. We begin with the incompressible

continuity equation,

v =0

and the vector form of the Navier—Stokes equation, valid for
incompressible flow of a Newtonian fluid with constant properties,

DV [V - —
pﬁ=p ;+[1rf1"|.7}1” = —VP + pg + uV-V



Scaling parameters used to nondimensionalize the continuity and momentum
equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions
L Characteristic length {L}
v Characteristic speed Lt~}
f Characteristic frequency [t~}
P,— P, Reference pressure difference [mL~1t2}
g Gravitational acceleration {Lt-2}
ﬂ(’F 2(")?% e INJ .L =) gl"') = V-)((—")._'__ =7 Vx; q L

I* L L

We can define scaled variables:
=g v gL V= vV
., P-P, _ T = =
Pr=p—p T, VLU &

Lo v ]
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In terms of which the continuity and NS equations become

-7 X
Nondimensionalized continuity: VeV =0 ;V V - o =) v ‘( - .
y e - ) ) L 0
2t A (ﬂ‘ _,‘)_,* Po = Puzpe | =, BV o
" Vi —J+ VY V= L=y + vy - x
34’( iy v L PEE TP T V.V ¢
L * — — — P - -F — L —
[f_] av‘ 'l(v*?‘)v* _ _[ 0 W]F*P* . [311? N [ I ],E,.gw
VI ot pV- V= pVL
e T
Sl— Eyu. —L .L_
L . . . Fe Re
Nondimensionalized Navier—Stokes:
9 |511'ﬂrﬂ +(V-VW = —[Eu]V P’ L e L |y
_‘ = &F —_— — u i B _‘ —_— &
at l Fr- g Re

Thus, the relative importance of the terms in the NS equation depends only on the relative
magnitudes of the dimensionless parameters in square brackets [ ] known as the Strouhal
(St), Euler (Eu), Froude (Fr), and Reynolds (Re) numbers.
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Dynamic similarity

* Since there are four dimensionless

parameters, dynamic similarity W
between a model and a prototype S s Bl T L R
requires all four of these to be the
same for the model and the
prototype (Stmodel = Stprototyper Eumodel =
Eu Froodel = FF and
Remodel = Reprototype)'

Ex: Tj‘”'l l. VML‘ Model

‘ Stiodel Ellmogel Frmodel: Remodel

—) _
Le*?,

prototype’ prototype’




* If the flow is steady, then f = 0 and the Strouhal number drops out of the list of
dimensionless parameters (St = 0). If the characteristic frequency f is very small
such that St << 1 the flow is called quasi-steady. This means that at any instant in
time (or at any phase of a slow periodic cycle), we can solve the problem as if the
flow were steady, and the unsteady term again drops out.

* The effect of gravity is usually important only in flows with free-surface effects
(e.g., waves, ship motion, spillways from hydroelectric dams, flow of rivers). For
many engineering problems there is no free surface (pipe flow, fully submerged
flow around a submarine or torpedo, automobile motion, flight of airplanes,
birds, insects, etc.). In such cases, the only effect of gravity on the flow dynamics
is a hydrostatic pressure distribution in the vertical direction superposed on the
pressure field due to the fluid flow.

Madified pressure: P" =P+ pgz

* In terms of which the NS equation becomes

DV _ [, a97] = -5 + uvev
—_— =g | — P T J i N TLY
Por —Plae ™V "
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Creeping flow
(Stokes)

* Approximation of the class of fluid flow
called creeping flow.

e Other names for this class of flow
include Stokes flow and low Reynold
number flow.

* As the latter name implies, these are
flows in which the Reynolds number is
very small (Re << 1).

* By inspection of the definition of the
Reynolds number, Re = pVL/u, we see that
creeping flow is encountered when either
p, V, or Lis very small or viscosity is very
large (or some combination of these).

T\e? L\/ /1/1-:@-\7

PRS-

\7

Sec. 10.3, Cengel

—

100% Pure
Honey

Direet 1o you
from the loyeh

Stokes Valley
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Stokes flow

* Another example of creeping flow is all around us
and inside us, although we can’t see it, namely, flow
around microscopic organisms. Microorganisms live
their entire lives in the creeping flow regime since
they are very small, their size being of order a few
microns, and they move very slowly, even though
they may move in air or swim in water with a
viscosity that can hardly be classified as “large”. u,;
= 18.5 uN-s/m? and Uyawer = 1.002 mN-s/m?2 at room
temperature — for comparison, fihoney = 6 N-s/m?.

* Salmonella bacterium swimming through water. The
bacterium’s body is only about 1 um long; its
flagella (hairlike tails) extend several microns behind
the body and serve as its propulsion mechanism.
The Reynolds number associated with its motion is
much smaller than 1 (typically, Re=107> - 1074).

7N -~ ot
/'-,.i:‘;-

(b)
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Stokes flow

* For simplicity, we assume that gravitational effects are negligible, or
that they contribute only to a hydrostatic pressure component, as
discussed previously.

* We also assume either steady flow or oscillating flow, with a Strouhal
number of order unity (St < 1) or smaller, so that the unsteady
acceleration term is orders of magnitude smaller than the viscous
term [1/Re] (the Reynolds number is very small).

* The advective term is of order 1, so this term drops out as well.

Thus, we ignore the entire left side of NS, which reduces to
cormWsosidrde

Nondimensionalized Navier—Siokes: ols LL TNM ;:0 _n°
~° i )
1 . I s
—[Eu]V' P + - +\|=—|N “V
e ()
. — 1 N
Ereepmg ﬂﬂH approximation: [Eu]V P = [E V-V .




Approximate Navier—Stokes equation for creeping flow:

You rely on inertia when you swim. For example, you take a
stroke, and then you are able to glide for some distance
before you need to take another stroke. When you swim, the
inertial terms in the Navier—Stokes equation are much larger
than the viscous terms, since the Reynolds number is very
large.

For microorganisms swimming in the creeping flow regime,
however, there is negligible inertia, and thus no gliding is
possible. In fact, the lack of inertial terms has a substantial
impact on how microorganisms are designed to swim. A
flapping tail like that of a dolphin would get them nowhere.
Instead, their long, narrow tails (flagella) undulate in a
sinusoidal motion to propel them forward, as illustrated for a
sperm. Without any inertia, the sperm does not move unless
his tail is moving. The instant his tail stops, the sperm stops
moving.
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How do micro-scale organisms swim?

)
Tumble

&( %un e
~
S B e,
7~ From Howard C. Berg's WEB site
Tumble

Microbiology: an introduction. G. Tortora et al., Pearson (2016)

Reynolds number = 107

Equivalent to a human swimming on

hOt tar Brad Nelson, Robotics and Intelligent Systems at ETH Zirich



Time-reversibility of Stokes Flow

A

https://www.youtube.com/watch?v=p
08_KITKPS50

A

Time-reversibility of Stokes Flows: Dye has been injected into a
viscous fluid sandwiched between two concentric cylinders (top
panel). The core cylinder is then rotated to shear the dye into a
spiral as viewed from above. The dye appears to be mixed with
the fluid viewed from the side (middle panel). The rotation is then
reversed bringing the cylinder to its original position. The dye

"unmixes" (bottom panel). Reversal is not perfect because some
diffusion of dye occurs.



Drag in Stokes flow

Drrag force on a sphere in creeping flow: E 3ruVD




Stokes stream function (Acheson, page 173)

For axisymmetric incompressible flow, we can write in spherical
coordinates: J. A =0 v

- Nch/‘fwl‘w\o \/ %
-2 (') = _v ( W ) 7
2‘( u=va rsinﬂ% —_-i
_ )7 __ 1t w1 a¥
ety & Y= sn0a6’ YT rsin6or
O f
i
The Stokes stream function is constant along streamlines:
O 1" = C‘rc oo
W uydV L
Dj;) 1,(u-V)‘P--u,,alr+r&9-— 7#14-.4/ >

D" " (lv\L\L 4Zl Cohp . n/c



Stokes flow around a sphere

(Acheson, page 223)

Axisymmetric flow A~

M =z©° / Q 5
u=[u/(r, 0), ug(r, 6), 0] (()

By using the Stokes stream function, we automatically satisfy the
continuity equation (div V =0)

_L w1 ow
b sing 50’ “e = T sin@ ar
Then (0y4)
VAH=[0,0,—_ EZIP]
rsin 6

where

&? sinﬂa( 1 8)

E’=—+
orr r? 96 \sin 696
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NS in the Stokes regime

VP = uvvV =) Vp=—uVA(VAu)
since v A(VAn) = V(V-u) - Vu_
S =0
Weobtain ( “3p ' u 8
e obtain p_ 2f‘ By ()
dr r°sin 696 0 N\

f:?;v.e.y d / @

S _ TR T gy 3 [y

r30 rsin 60r ’D_"'( * 9

Eliminating the pressure cross derivatives we find

— |EAE®) =0l & pl escarmeitrs
"‘“—‘z‘/t/J«J'-s.

3> sin@ 3 1 8\
+ Y=
[8r2 rr 360 (sin f ae)]
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Boundary condition at r=a: noslip
U -0

ow_13%_

orl rae|

v:“, f’-~

\—
At infinity: & - U<
u,~Ucos@ and ug~-—-Usinf@ asr—
3
m) ¥~3Ur’sin’6

Which suggests a solution of the form

¥ = f(r)sin°6

then

E2(E21p) =0 ; (__(ﬁ — Z)zf =0

dr* r?
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The solution is a polynomial in r, with the condition (use_f=\r°‘in the
previous equation):

[(@=2)(a-3)-2)[a(e-1)-2]=0 L - -1, L,2,H4
> f(r)=?+Br+Cr2+Dr4_

Uniform flow at infinity: C=1U and D=0 f(.;u,.o) =yt

=2 ot
Atr=a, f(@)=f'(@)=0 A-<v g .
‘1 e .‘;Q—
] 3
We find iqj = %U(zrz + a? - 3ar)sin29

:./\\
v

Fig. 7.2. Low Reynolds number flow past a sphere. 95




Drag force

op_ _u 9
= EZ‘P,
To calculate the pressure, we use 3r r’sin 696
1op —u 9 .,
- = — E°Y
ro@ rsin 6 or !

For the previous streamfunction:

E*® = 3Uar ' sin’6

Integrating




Stress components in spherical coordinates

tr=7;_r=_p+2u aur 9’, :/rlr"‘ Mr -&—_7v~0 loa I o _f.r&m.(.

Ty - =Pyt Lpsy
uou, 'y - ’ /<)

raoe’

Calculate the velocity using the stream function

to=T,, =0, L1 oW 1w

"~ sin6 96’ 40 =" rsin® or

Using the streamfunction, we can calculate the velocity field and the
stress components

U U
=—pm+%‘u7cos 0, t9=—%u7sin9.

By symmetry, we expect the net force on the sphere to be on the
direction of the uniform stream, and the appropriate component of

the stress is = /
. nU 7
t=t,cos @ —tygsin@=—p,cos O +3— >

% = cos Or — sin 70 97



Recall. See Acheson’s appendix

The components of the rate-of-strain tensor are given by:

" or’ % " ro0 r’
1 OJu, u, ugcoth
€o0 = — ,
rsinf o¢p r r
sin 3 [ u, ) 1 Jug
= + , A.44
o r 96 (sin 6/ rsinf 3¢ ( )

1 OJu, d u¢)
— + el ey
2qr rsin 0 9¢ 'ar( r

o ug) 10u,
=r—(2)+-—.
2€ro rar(r r 960
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The drag on the sphere is therefore
2w prm
D= f f ta’sin 8 d0 d¢ = 6rula.
0 0

This is the Stokes law. This is valid for low Re (measurements start to
deviate from Stokes law for Re = 0.5).

For a ball falling through a viscous liquid, we also have the buoyancy
force

6”F‘UT‘1 = %Ra3(psphere - pﬂuid)g‘
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Stokes flow around a sphere (alternative
derivation)

Faber

When its inertial term is neglected, the Navier-Stokes equation becomes
- Vp* = pVA(VAu) =0, (6.63)
which, since
VA(VAu)=V(V-u) — Vu,

1s equivalent for an effectively incompressible fluid such that V- u is zero to
Vu = — Vp*. (6.64)

This is the basic equation of motion for creeping flow. Its solutions for u consist in
general of a particudar integral, upy, and a complementary function, ucy. The latter
is a solution of V2u = 0, which means that it is normally a solution of V /\ % = 0 and
can therefore be described by a potential ¢cp. In the present problem the
complementary function has to be chosen in such a way that it corresponds to
uniform flow in the x; direction at large distances from the sphere, so in the
spherical polar coordinates defined in fig. 4.6 we may expect [$4.7]

¢cr = UR cos 0 + AR cos 0,
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or
Upcp = (U—2AR) cos 0,
uger = (—U — AR ?) sin 6,
where the coefficient A remains to be determined.
We cannot hope to match the boundary condition that # = 0 at R = ¢ for all
values of 6 unless ugz py and u, p; are likewise proportional to cos 8 and sin 6

respectively. But application of the divergence operator (V-) to (6.63) shows at
once that p* obeys Laplace’s equation,

VpE = 0. (6.65)

Where the flow is axially symmetric, asitis here, p* must therefore be expressible,
like ¢c, 1n solid harmonic functions. If it is defined to be zero at large values of R
where u = U, then the only credible possibility is that

p* = BR™? cos 6, (6.66)

where the coefficient Bis independent of # and R. In that case Vp* is proportional
to R, and up; must therefore be proportional to R™'. Let us try

uppr = CR™' cos 6.
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Then in order to satisfy the condition

Voup = 1 a(R%uppr) L L osinBuyp)

2 ; - =0
R IR R sin 0 060

we must set

1 :
Hgpr = — ; CR_] sin 6.

Thesc guesses have now to be checked by substitution into (6.64). Both sides of
that equation are, of course, vectors, but to simplify the analysis we shall consider
only their components in the longitudinal x, direction; it can easily be verified that
when these are equal to one another the transverse components are equal to one
another also. On the left-hand side we have

) 1 M 1 ] ( .
Vou = R — —_ sin O ) Up COS O — Uy, sin 6),
L [R2 aR( aR) R sin 6 90 9} (it v )

which simplifies to

L1 9 ]
Vi pp == C—o—— smﬁ‘—-—2 0s> 0 + sin® 0
P T R? smﬁat‘?[ (2e )J

= — % (2 cos® 0 — sin® 6),
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On the right-hand side we have

cos f — — 81
nox, 0 R R a6

# £ #
Lot 1 ap 1.-,133P)

———i 2 cos” O — sin” 6).
R'{
NR

Figure 6.12  Lines of flow past a sphere according to Stokes’s solution.

These expressions can indeed be made equal to one another, by choosing C = Bfy.
Finally, to ensure that both g and u, vanish at R = a we need to let A = — 1a’U,
C=—3al.

The full solution, which is the only solution which satisfies the given boundary
conditions, is therefore

3 3
uR=uRCF+uRp[:UCOSGl——a+a—¢,),
' ' 2R 2R
(6.67)
3¢ a
= e+ = —Usin@|1 -2 - 2.
g = Ugcr T Ugp Sl ( iR 4R3)

103



The principal respects in which in which it differs from the solution of Euler’s
equation worked out in §4.7, on the basis of potential theory alone, arc:

(1) it satisfies the no-slip boundary condition at the sphere’s surface;
(i1) it describes a velocity u, in the equatorial (¢ = 7/2) plane which increases
monotonically towards U with increasing R instead of decreasing;
(1i1) the terms in a/R which it contains represent a perturbation of the flow field
which is of a long-range nature.
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Pressure

According to this solution, the excess stress which acts upon the surface of the
sphere has a normal component given by

a

. g 3nU cos 0
)1: — L 2 (_) —
Pr—=0P U R |, 2

[(6.11)] and a shear component acting in the direction of increasing 6 given by

Jd (u 1 ou 3pU sin @
SHR = na S (-—6) + — R [ J— _??__,__
dR\R a a0 |,_, 2a

[(6.3) and (6.53)]. Taken together, these components are equivalent to a uniform
force per unit area in the direction of U of magnitude 3y U/2a. The total drag force
in the direction of U is therefore

3U
e

Fp = 4xa’ = 6anall. (6.68)

This expression constitutes Stokes’s law.
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Discussion

It is only in the limit when velocity U and Reynolds Number Re (= 2paU/fy)
tend to zero that the assumption on which Stokes’s law is based 1s fully consistent
with the details of his solution. Since the leading term in u is U, while the next
terms in (6.67) are proportional to aU/R, the inertial term in the Navier-Stokes
equation, p(u- V)u, is of order pU”a/R” at large values of R according to Stokes,
while the viscous term 3V /\ (V A u) is of order yaU/R*. Far from being negligible,
the inertial term is clearly liable to exceed the viscous term at distances such that

The inconsistency may suggest to the reader that we cannot trust equations (6.67)
to describe the velocity distribution in the immediate vicinity of the sphere, and
that we therefore cannot trust Stokes’s law, unless Re is really quite small
compared with unity. It is only when Re reaches about 0-5, however, that
deviations from the law become detectable experimentally.

Needless to say, if Stokes's law applies in a frame of reference such that the
sphere is stationary then it applies also in the frame in which the distant fluid is
stationary and the sphere is moving instead. Thus a solid sphere of radius a and
density p,, falling down the axis of a vertical cylinder of sufficiently large radius
which is filled with liquid of density py;. may be expected to reach a terminal
velocity U such that
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provided that

Re = 4a3pliq(p:~nlj_ pliq)g
Oy

< 05, (6.70)

If the falling sphere is itself liquid, with viscosity ', circulating currents arise
within it as it falls which modify the flow pattern outside the sphere. The modified
form of Stokes’s law which applies in these circumstances is

_ dmgal(n + 3y')

F
P n+y

(6.71)

This evidently reduces to (6.68) when 5’ >> g, e.g. under the conditions of
Millikan’s celebrated experiment, where the spheres were oil drops moving
through air. At the opposite extreme where ' < 5, however, e.g. where the

spheres are very small bubbles of gas rising (rather than falling) through soda

water or champagne, it reduces to Fy = danall, so the terminal velocity of such
bubbles should be
—_————

2 .
U = LLigk (6.72)
31

[(6.69), but with 6 replaced by 9 and with p,, replaced by p,,.; pya. is negligible
compared with py;|. In fact, (6.72) does not describe the terminal velocity of rising
soda water bubbles at all accurately. That is partly because the Reynolds Number
normally exceeds 0-5 but also, it seems, because impurities adsorbed on the gas-
liquid interface endow this interface with some measure of rigidity. It can be
shown, incidentally, that the stresses which act on a gas bubble which is rising
steadily with Re << 1 do not tend to distort it: it should — and does — remain
spherical.

Challenge: flowing droplet

Vo =V

and

T

i

A

= Tsm
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n' >y https://youtu.be/UFiPWv03f6g
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Simple fluid simulations (exercises)

* Numerical solution of the Navier-Stokes equation;

e Lattice Boltzmann method (LBM): implements the Boltzmann
equation and recovers the Navier-Stokes equation in the macroscopic
limit;

» Use of python: not efficient, but practical and more didactic;

* Available at: https://github.com/rcvcoelho/lbm-python.git

¥ main ~ ¥ 1branch © 0tags Go to file m/

q' reveoelho Add files via upload 7902917 4 daysage YY) 3 commits
M LICENSE Initial commit 14 days ago
M codel-multiphase.py Add files via upload 4 days ago
M code2-cilinder.py Add files via upload 4 days ago
™ code3-Poiseuille.py Add files via upload 10 days ago
M coded-kelvin-helmoltz.py Add files via upload 4 days ago
M code5-von-karman-street.py Add files via upload 4 days ago 109



Poiseuille 2D

T=200 (transient state). It becomes a parabola for
longer times.
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Cylinder

t=76700 steps
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