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Overview
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Understanding the derivation of the differential linear momentum equation for 
incompressible Newtonian fluids – the Navier-Stokes equation.

This is a set of partial differential equations that are valid at any point in the flow.

When solved, together with the continuity equation, these equations yield details about the 
velocity, density, pressure, etc., at every point throughout the entire flow domain. 

From these fields, by integration, we can find the gross features of the flow such as the net 
force on the walls or on immersed bodies. 

Obtaining analytical solutions of the equation of motion for simple flow fields.

Derivation of the Stokes equation for creeping flow. Obtaining the drag force on a sphere in 
a uniform stream.

Other applications of the Stoke’s equation.
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Newtonian fluids



Newtonian and 
non-Newtonian 
fluids

• Newtonian fluids, defined as 
fluids for which the shear 
stress is linearly proportional 
to the shear strain rate. Many 
common fluids, such as air and 
other gases, water, kerosene, 
gasoline, and other oil-based 
liquids, are Newtonian fluids. 

• Fluids for which the shear 
stress is not linearly related to 
the shear strain rate are called 
non-Newtonian fluids. 
Examples include slurries and 
colloidal suspensions, polymer 
solutions, blood, paste, and 
cake batter. 
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https://www.youtube.com/watch?v=2mYHGn_Pd5M&t=143s

Toothpaste: Bingham plastic Ketchup: shear thinning

Cornstarch: shear thickening Honey: viscous Newtonian fluid
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https://doi.org/10.1063/PT.3.4809

https://doi.org/10.1063/PT.3.4809


Viscosity of Newtonian fluids
Caracterizes the degree of internal ‘friction’
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This ‘friction’, viscous stress, is associated with the resistance offered by two 
adjacent layers of the fluid to their relative motion.



Superfluid
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https://www.youtube.com/watch?v=2Z6UJbwxBZI

Suggested reading: https://www.scientificamerican.com/article/superfluid-can-climb-
walls/

Indistinguishable particles.

Nearly zero viscosity fluids.

Hydrodynamic equations are 
classical.



Differential analysis: mass

We start with the conservation of mass, which through the RTT yields the continuity 
equation 
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The volumetric strain rate vanishes
for incompressible flows.



Recall
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Reynolds transport theorem (RTT)



• For a control volume the RTT gives the momentum equation:

• The total force acting on the control volume is equal to the rate at 
which momentum changes within the control volume plus the rate at 
which momentum flows out of the control volume minus the rate at 
which momentum flows into the control volume.

• The divergence theorem implies that
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Differential analysis: momentum



and

• Re-arranging the terms, we find the equation  

valid for any CV and thus, we obtain the Cauchy equation of motion
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Other derivations are possible, e.g. by starting from an infinitesimal CV.



Alternative form of Cauchy’s equation

• Clearly,

• The second term of Cauchy’s equation can be written as

• Substituting this into the Cauchy’s equation we find

• The continuity equation implies that the term in brackets vanishes 
and then
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Cauchy’s equation in cartesian 
components
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The Navier-Stokes equation

• To be mathematically solvable, the number of equations must equal 
the number of unknowns, and thus we need six more equations. 

• These equations are called constitutive equations, and they enable us 
to write the components of the stress tensor in terms of the velocity 
and pressure fields.

• The first thing we do is to separate the pressure stresses and the 
viscous stresses.

• For a fluid at rest
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• For moving fluids, 

• where we have introduced a new tensor, 𝜏𝑖𝑗, called the viscous stress tensor 
or the deviatoric stress tensor.

• There are constitutive equations that express 𝜏𝑖𝑗in terms of the velocity field 
and measurable fluid properties such as the viscosity.

• The actual form of the constitutive relations depends on the type of fluid.

• The stress is Galilean invariant: it does not depend directly on the flow 
velocity, but only on spatial derivatives of the flow velocity. So the stress 
variable is the tensor gradient ∇u.

• The fluid is assumed to be isotropic, as with gases and simple liquids, and 
consequently τ is an isotropic tensor; furthermore, since the deviatoric stress 
tensor can be expressed in terms of the dynamic viscosity μ:
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Acheson, page 209



Navier-Stokes equation for incompressible 
and isothermal flow
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where 𝜇 is the shear viscosity. 

In cartesian coordinates, the deviatoric stress tensor becomes



Stress tensor for Newtonian fluids
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Substituting this into Cauchy’s equation we find, in the x direction:

We note that as long as the velocity components are smooth functions of
x, y, and z, the order of differentiation is irrelevant. For example, the first
part of the last term above can be rewritten as
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After some (clever) re-arrangements of the viscous terms we find

0

and thus

Similarly,



Cartesian 
coordinates
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Cylindrical 
coordinates
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Viscous stress tensor in cylindrical 
coordinates 
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Alternative derivation of the Navier-Stokes 
equation (skip on a first reading)

• It can be shown (Faber page 196-198) that the isotropy of the fluid, 
the symmetry of the shear stress and the linearity between stress 
and strain rate imply,  

with similar equations for 2 and 3.

• For incompressible fluids, the equations may be re-written, 
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Total force on a fluid element (component 1)
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The total force in vector form is



Navier-Stokes equation for incompressible 
fluids 
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Boundary conditions

• The most-used boundary condition is the no-slip condition, which 
states that for a fluid in contact with a solid wall, the velocity of the 
fluid must equal that of the wall,
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Boundary conditions

• When two fluids (fluid A and fluid B) meet at an interface, the interface 
boundary conditions are
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Boundary conditions

• For a liquid in contact with a gas, with negligible surface tension 
effects, the free- surface boundary conditions are
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Fully developed Couette flow
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• Consider steady, incompressible, laminar flow of a Newtonian fluid in the 
narrow gap between two infinite parallel plates. The top plate is moving at 
speed V, and the bottom plate is stationary. The distance between these two 
plates is h, and gravity acts in the negative z-direction (into the page).

• The boundary conditions come from imposing the no-slip condition: (1) At the 
bottom plate (y = 0), u = v = w = 0. (2) At the top plate (y = h), u = V, v = 0, and w 
= 0.

• Continuity



Navier-Stokes x, y and z componentes:
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There is no applied pressure gradient pushing the flow in the x-direction; the flow 
establishes itself due to viscous stresses caused by the moving upper plate.

In the x direction:

In the y direction: 

In the z direction:
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For incompressible flow fields without free surfaces, hydrostatic pressure
does not contribute to the dynamics of the flow field.

Velocity field

Pressure field



Shear force on the bottom plate
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Deviatoric shear stress tensor

Discussion The z-component of the linear momentum equation is uncoupled from 
the rest of the equations; this explains why we get a hydrostatic pressure 
distribution in the z-direction, even though the fluid is not static, but moving. 

The viscous stress tensor is constant everywhere in the flow field, not just at the 
bottom wall (note that the components of the tensor are not a function of location).

Rotational flow



Rotational viscometer
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The gap between the two cylinders is very small and
contains the fluid.

The magnified region is nearly identical to the parallel 
plates setup since the gap is small, i.e. (Ro - Ri) << Ro.

In a viscosity measurement, the angular velocity of the 
inner cylinder, 𝜔, is measured, as is the applied torque, 
Tapplied , required to rotate the cylinder. 

From the previous example, we know that the viscous shear stress acting on a fluid 
element adjacent to the inner cylinder is approximately equal to

𝜏 acts to the right on the fluid element adjacent to the inner cylinder wall; hence, 
the force per unit area acting on the inner cylinder at this location acts to the left 
with the same magnitude.



The total clockwise torque acting on the inner cylinder wall due to fluid viscosity is 
thus equal to this shear stress times the wall area times the moment arm,

Under steady conditions, the clockwise torque Tviscous is balanced by the applied 
counterclockwise torque Tapplied. Equating these we find
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Couette flow with applied pressure gradient
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The same as in the Couette flow of the previous slides 
but the x-component of the momentum equation is 
now:

Integrating twice yields

For the pressure



• Applying the velocity boundary conditions

•  u(y) is the velocity profile of Couette flow between parallel plates 
with an applied negative pressure gradient; the dashed red line 
indicates the profile for a zero pressure gradient, and the dotted line 
indicates the profile for a negative pressure gradient with the upper 
plate stationary (V < 0).
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Dimensional analysis

• The problem is set in terms of velocity u as a function of y, h, V, m, 
and −P/−x. There are six variables (including the dependent variable 
u), and since there are three primary dimensions (mass, length, and 
time), we expect 6 - 3 dimensionless groups. When we pick h, V, and 
m as our repeating variables, we get the following result:
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Oil film falling down a vertical wall

49

1. The wall is infinite in the yz-plane (y is into the page for a right-handed 
coordinate system). 
2. The flow is steady (all partial derivatives with respect to time are zero). 
3. The flow is parallel (the x-component of velocity, u, is zero everywhere). 
4. The fluid is incompressible and Newtonian with constant properties, 
and the flow is laminar. 
5. Pressure P = Patm constant at the free surface. In other words, there is 
no applied pressure gradient pushing the flow; the flow establishes itself 
due to a balance between gravitational forces and viscous forces. In 
addition, since there is no gravity force in the horizontal direction, P = Patm 
everywhere. 
6.  The velocity field is purely 2D, which implies that derivatives w.r. to y 
are zero.
7. Gravity acts in the negative z direction. 
8. The boundary conditions are: no slip at the wall; at x = 0, u = v = w = 0. 
At the free surface (x = h), there is negligible shear, which for a vertical 

free surface, in this coordinate system, means
𝜕𝑤

𝜕𝑥
= 0 at x = h.
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Continuity:

NS w:

Integration:



Flow in a round pipe: Poiseuille

1 The pipe is infinitely long in the x-direction. 

2 The flow is steady (all partial time derivatives are zero). 

3 This is a parallel flow (the r-component of velocity, ur, is zero). 

4 The fluid is incompressible and Newtonian with constant properties, and the 
flow is laminar. 

5 A constant pressure gradient is applied in the x-direction such that pressure 
changes linearly with respect to x. 

6 The velocity field is axisymmetric with no swirl, implying that 𝑢𝜃 = 0 and all 
partial derivatives with respect to 𝜃 are zero. 
7 We ignore the effects of gravity. 

8 The first boundary condition comes from imposing the no slip condition at 
the pipe wall: (1) at 𝑟 = 𝑅, 𝑉 = 0.

9 The second boundary condition comes from the fact that the centerline of 
the pipe is an axis of symmetry: (2) at 𝑟 = 0,

𝜕𝑢

𝜕𝑥
= 0. Alternatively: the 

velocity is finite at the center.
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Recall – Cylindrical coordinates

Gradient

Divergent

Laplacian

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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Continuity:

NS u:
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NS p:

Integration of NS for u:



Poiseuille’s law for the flow rate
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Viscous shear force
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For flow from left to right, dP/dx is negative, so the viscous shear stress on the 
bottom of the fluid element at the wall is in the direction opposite to that indicated 
in the figure. (This agrees with our intuition since the pipe wall exerts a retarding 
force on the fluid.) The shear force per unit area on the wall is equal and opposite to 
this; hence,

The stress tensor is
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Viscosity and Poiseuille's Law:
https://www.youtube.com/watch?v=wTnI_kfPBhQ



Force balance

58

Navier-Stokes equation

In most of the previous examples, the acceleration of the fluid elements is zero. It 
means that the viscous force balance the external force (e.g., gravity) or pressure 
gradients in such a way that the sum of forces acting on a fluid element is zero.



Alternative 
derivation for flow in 
a circular pipe

Obtain the momentum equation 
by applying a momentum 
balance to a differential volume 
element, and we obtain the 
velocity profile by solving it.

Free-body diagram of a ring-
shaped differential fluid 
element of radius r, thickness dr, 
and length dx oriented coaxially 
with a horizontal pipe in fully 
developed laminar flow.
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Sec. 8.4, Çengel



In fully developed laminar flow the axial velocity is, u= u(r). There is no motion 
in the radial direction. There is no acceleration (check: calculate the 
acceleration and verify that it is zero).

• Consider a ring-shaped differential volume element of 
radius r, thickness dr, and length dx oriented coaxially 
with the pipe.

• The volume element involves only pressure and 
viscous effects and thus the pressure and shear forces 
must balance each other. The pressure force acting on 
a submerged plane surface is the product of the 
pressure at the centroid of the surface and the surface 
area. A force balance on the volume element in the 
flow direction (x) gives
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Same equation obtained with NS:
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Recall

Deviatoric stress tensor

Stress tensor
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Different fluid element (r from 0 to R)
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Separation of variables implies that the pressure gradient is constant 

The velocity profile is obtained by integration and use of the boundary conditions:

The average velocity is 

In terms of which the profile becomes



Effect of gravity

• Gravity has no effect on flow in horizontal pipes, 
but it has a significant effect on both the velocity 
and the flow rate in uphill or downhill pipes.

• Relations for inclined pipes can be obtained in a 
similar manner from a force balance in the 
direction of flow. The only additional force in this 
case is the component of the fluid weight in the 
flow direction, which is
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Then

and



Effect of gravity
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• As expected, gravity opposes uphill flow, enhances downhill flow, and has no effect 
on horizontal flow. 

• Downhill flow can occur even in the absence of a pressure difference applied by a 
pump. For the case of P1 =  P2 (i.e., no applied pressure difference), the pressure 
throughout the entire pipe would remain constant, and the fluid would flow 
through the pipe under the influence of gravity at a rate that depends on the angle 
of inclination, reaching its maximum value when the pipe is vertical.

The velocity profile, average velocity and flow rate are:



The flow regime in the first case is said to be 
laminar, characterized by
smooth streamlines and highly ordered 
motion, and turbulent in the second
case, where it is characterized by velocity 
fluctuations and highly disordered motion.

The transition from laminar to turbulent 
flow does not occur suddenly; rather, it 
occurs over some region in which the flow 
fluctuates between laminar and turbulent 
flows before it becomes fully turbulent.

Most flows encountered in practice are 
turbulent. Laminar flow is encountered
when highly viscous fluids such as oils flow 
in small pipes or narrow
passages.
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Reynolds 
number

68
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https://www.youtube.com/watch?v=6A8B05V4OzA



Sudden motion of an infinite flat plate
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Consider a Newtonian fluid on top of a flat plate in the xy-plane at z = 0. The fluid is at rest 
until t = 0, when the plate suddenly starts moving at speed V in the x-direction. 

1 The wall is infinite in the x- and y-directions; thus, nothing is special about any 
particular x- or y-location. 
2 The flow is parallel everywhere (w = 0). 
3 Pressure P = constant with respect to x. In other words, there is no applied pressure 
gradient pushing the flow in the x-direction; flow occurs due to viscous stresses caused 
by the moving plate. 
4 The fluid is incompressible and Newtonian with constant properties, and the flow is
laminar. 
5 The velocity field is two-dimensional in the xz-plane; therefore, v = 0, and all partial 
derivatives with respect to y are zero. 
6 Gravity acts in the -z-direction



Initial and boundary conditions:

(1) At t = 0, u = 0 everywhere (no flow until the plate starts moving); 

(2) at z = 0, u = V for all values of x and y (no-slip condition at the plate); 

(3) as z → ∞, u → 0 (far from the plate, the effect of the moving plate is not felt); 

(4) at z = 0, P = Pwall (the pressure at the wall is constant at any x- or y-location 
along the plate).

• Continuity

• y – momentum



(Diffusion equation for u, with D=ν)

z -  momentum

x – momentum    
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• The 1-D diffusion 
equation is linear

• It is a partial 
differential 
equation (PDE)

• It is used in many 
fields of physics



Diffusion equation
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From the z-component we obtain the pressure

Verify that this is a solution of the differential equation and that it 
satisfies the boundary conditions.



76

After 15 min of flow, the effect of the moving plate is 
not felt beyond about 10 cm above the plate!



The time required for momentum to 
diffuse into the fluid seems much longer 
than we would expect.

This is because the solution presented 
here is valid only for laminar flow.

It turns out that if the plate’s speed is 
large enough, or if there are significant 
vibrations in the plate or disturbances in 
the fluid, the flow will become turbulent. 

In a turbulent flow, large eddies mix 
rapidly moving fluid near the wall with 
slowly moving fluid away from the wall. 

This mixing process occurs rather quickly, 
so that turbulent diffusion is usually 
orders of magnitude faster than laminar 
diffusion.
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Non dimensionalized equations of motion

Our goal in this section is to nondimensionalize the equations of 
motion so that we can properly compare the orders of magnitude of 
the various terms in the equations. We begin with the incompressible 
continuity equation,

and the vector form of the Navier–Stokes equation, valid for 
incompressible flow of a Newtonian fluid with constant properties,

78

Sec. 10-2 Çengel
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We can define scaled variables:
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Thus, the relative importance of the terms in the NS equation depends only on the relative 
magnitudes of  the dimensionless parameters in square brackets [ ] known as the Strouhal
(St), Euler (Eu), Froude (Fr), and Reynolds (Re) numbers.

In terms of which the continuity and NS equations become 



Dynamic similarity

• Since there are four dimensionless 
parameters, dynamic similarity 
between a model and a prototype 
requires all four of these to be the 
same for the model and the 
prototype (Stmodel = Stprototype, Eumodel = 
Euprototype, Frmodel = Frprototype, and 
Remodel = Reprototype).
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• If the flow is steady, then f = 0 and the Strouhal number drops out of the list of 
dimensionless parameters (St = 0). If the characteristic frequency f is very small 
such that St << 1 the flow is called quasi-steady. This means that at any instant in 
time (or at any phase of a slow periodic cycle), we can solve the problem as if the 
flow were steady, and the unsteady term again drops out.

• The effect of gravity is usually important only in flows with free-surface effects 
(e.g., waves, ship motion, spillways from hydroelectric dams, flow of rivers). For 
many engineering problems there is no free surface (pipe flow, fully submerged 
flow around a submarine or torpedo, automobile motion, flight of airplanes, 
birds, insects, etc.). In such cases, the only effect of gravity on the flow dynamics 
is a hydrostatic pressure distribution in the vertical direction superposed on the 
pressure field due to the fluid flow.

• In terms of which the NS equation becomes
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Creeping flow 
(Stokes)

• Approximation of the class of fluid flow 
called creeping flow.

• Other names for this class of flow 
include Stokes flow and low Reynold 
number flow. 

• As the latter name implies, these are 
flows in which the Reynolds number is 
very small (Re << 1). 

• By inspection of the definition of the 
Reynolds number, Re = 𝜌VL/𝜇, we see that 
creeping flow is encountered when either 
𝜌, V, or L is very small or viscosity is very 
large (or some combination of these).
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Sec. 10.3, Çengel



Stokes flow

• Another example of creeping flow is all around us 
and inside us, although we can’t see it, namely, flow 
around microscopic organisms. Microorganisms live 
their entire lives in the creeping flow regime since 
they are very small, their size being of order a few 
microns, and they move very slowly, even though 
they may move in air or swim in water with a 
viscosity that can hardly be classified as “large”. 𝜇air 
≅ 18.5 μN·s/m2 and 𝜇water ≅ 1.002 mN·s/m2 at room 
temperature – for comparison, 𝜇honey ≅ 6 N·s/m2.

• Salmonella bacterium swimming through water. The 
bacterium’s body is only about 1 μm long; its 
flagella (hairlike tails) extend several microns behind 
the body and serve as its propulsion mechanism. 
The Reynolds number associated with its motion is   
much smaller than 1 (typically, Re=10−5 – 10−4 ).
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Stokes flow

• For simplicity, we assume that gravitational effects are negligible, or 
that they contribute only to a hydrostatic pressure component, as 
discussed previously.

• We also assume either steady flow or oscillating flow, with a Strouhal 
number of order unity (St < 1) or smaller, so that the unsteady 
acceleration term is orders of magnitude smaller than the viscous 
term [1/Re] (the Reynolds number is very small). 

• The advective term is of order 1, so this term drops out as well. 

Thus, we ignore the entire left side of NS, which reduces to
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You rely on inertia when you swim. For example, you take a 
stroke, and then you are able to glide for some distance 
before you need to take another stroke. When you swim, the 
inertial terms in the Navier–Stokes equation are much larger 
than the viscous terms, since the Reynolds number is very 
large. 

For microorganisms swimming in the creeping flow regime, 
however, there is negligible inertia, and thus no gliding is 
possible. In fact, the lack of inertial terms has a substantial 
impact on how microorganisms are designed to swim. A 
flapping tail like that of a dolphin would get them nowhere. 
Instead, their long, narrow tails (flagella) undulate in a 
sinusoidal motion to propel them forward, as illustrated for a
sperm. Without any inertia, the sperm does not move unless 
his tail is moving. The instant his tail stops, the sperm stops 
moving. 



Consequences of kinetic reversibility



How do micro-scale organisms swim?

Microbiology: an introduction. G. Tortora et al., Pearson (2016)

From Howard C. Berg's WEB site

Reynolds number = 10-5      

Equivalent to a human swimming on 
hot tar Brad Nelson, Robotics and Intelligent Systems at ETH Zürich 



Time-reversibility of Stokes Flow

https://www.youtube.com/watch?v=p

08_KlTKP50

Time-reversibility of Stokes Flows: Dye has been injected into a 

viscous fluid sandwiched between two concentric cylinders (top 

panel). The core cylinder is then rotated to shear the dye into a 

spiral as viewed from above. The dye appears to be mixed with 

the fluid viewed from the side (middle panel). The rotation is then 

reversed bringing the cylinder to its original position. The dye 

"unmixes" (bottom panel). Reversal is not perfect because some 

diffusion of dye occurs.



Drag in Stokes flow
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Stokes stream function

For axisymmetric incompressible flow, we can write in spherical 
coordinates:

The Stokes stream function is constant along streamlines:
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(Acheson, page 173)



Stokes flow around a sphere

Axisymmetric flow

By using the Stokes stream function, we automatically satisfy the 
continuity equation (div V =0)

Then

where
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(Acheson, page 223)



NS in the Stokes regime

since

We obtain

Eliminating the pressure cross derivatives we find
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Boundary condition at r=a: no slip

At infinity:

Which suggests a solution of the form

then
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The solution is a polynomial in r, with the condition (use f=rα in the 
previous equation):

Uniform flow at infinity:

At r=a,

We find

95



Drag force

To calculate the pressure, we use

For the previous streamfunction:

Integrating
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Stress components in spherical coordinates

Using the streamfunction, we can calculate the velocity field and the 
stress components

By symmetry, we expect the net force on the sphere to be on the 
direction of the uniform stream, and the appropriate component of 
the stress is

97

Calculate the velocity using the stream function



98

Recall. See Acheson’s appendix



The drag on the sphere is therefore

This is the Stokes law. This is valid for low Re (measurements start to 
deviate from Stokes law for Re = 0.5). 

For a ball falling through a viscous liquid, we also have the buoyancy 
force
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Stokes flow around a sphere (alternative 
derivation)

100

Faber
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102



103
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Pressure
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Discussion

106
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Challenge: flowing droplet
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https://youtu.be/UFiPWv03f6g



Simple fluid simulations (exercises)

• Numerical solution of the Navier-Stokes equation;

• Lattice Boltzmann method (LBM): implements the Boltzmann 
equation and recovers the Navier-Stokes equation in the macroscopic 
limit;

• Use of python: not efficient, but practical and more didactic;

• Available at: https://github.com/rcvcoelho/lbm-python.git

109



Poiseuille 2D
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T=200  (transient state). It becomes a parabola for 
longer times.



Cylinder

111

t=76700 steps
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